黑人巨大精品欧美在线观看,涩涩福利网址导航,欧美日韩xxx,日韩久久综合,久草中文视频,亚洲伊人久久网,狠狠色噜噜狠狠狠狠69


首頁
產(chǎn)品系列
行業(yè)應用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當前位置:首頁 > 新聞資訊 > 機器人開發(fā) > 讓大規(guī)模深度學習訓練線性加速、性能無損,基于BMUF的Adam優(yōu)化器并行化實踐  
 

讓大規(guī)模深度學習訓練線性加速、性能無損,基于BMUF的Adam優(yōu)化器并行化實踐

來源:AI科技大本營      編輯:創(chuàng)澤      時間:2020/5/29      主題:其他   [加盟]

作為一種自適應步長隨機梯度優(yōu)化器,自2014年提出以來,Adam 算法便以其不錯的性能風靡深度學習L域。為了提G應用于訓練大規(guī)模任務(wù)時的效率,該算法通常與同步隨機梯度(Synchronous Stochastic Gradient,SSG)技術(shù)相結(jié)合,采用數(shù)據(jù)并行(data parallel)的方式在多臺機器上執(zhí)行。在本文中,我們稱這一方法為 Sync-Adam。

本質(zhì)上來講,Sync-Adam 通過將一個 minibatch 內(nèi)樣本的梯度計算分布到多臺機器上達到加速目的,因此通信十分頻繁,并且隨著并行機器數(shù)目增多,minibatch 內(nèi)樣本的數(shù)量也成比例增加,這種情況下,通常會損害終得到的模型的性能。為解決基于 SSG 的 Adam 算法可擴展性差的難題,我們把目光投向了逐區(qū)塊模型更新濾波(Blockwise Model-Update Filtering, BMUF)框架。

BMUF 是一種通信G效的通用分布式優(yōu)化算法框架,于2016年由微軟亞洲研究院語音組的研究人員提出并發(fā)表。該算法在多個并行工作機之間周期性同步模型更新信息,并與歷史更新信息相結(jié)合提升全局模型性能。與基于 SSG 的算法相比,BMUF 具有通信頻率較低、訓練幾乎線性加速、模型性能基本無損的特點。這一算法已經(jīng)在工業(yè)界廣泛用于大規(guī)模深度學習模型的訓練。

本文中,我們采用 BMUF 框架并行化 Adam 算法,并在微軟大規(guī)模 OCR 和語音產(chǎn)品數(shù)據(jù)集上進行了測試。實驗結(jié)果表明,在大規(guī)模 OCR 任務(wù)中,BMUF-Adam 在多達64機的并行訓練中幾乎實現(xiàn)了線性加速的同時,基本沒有模型性能損失,在32機大詞匯量連續(xù)語音識別任務(wù)中也獲得了類似效果。

接下來我們探討如何采用 BMUF 框架賦能 Adam 算法,在大規(guī)模深度學習任務(wù)上成就不凡。


在基于 BMUF 的訓練框架下,假設(shè)我們總共有 N 個并行工作機,一個工作機可以是一塊或多塊 GPU 卡,也可以是一個計算節(jié)點。給定一個包含 Nτ 個 minibatch 的訓練數(shù)據(jù)子集,先我們將這些數(shù)據(jù)均勻分布到 N 個并行工作機,每臺工作機獲得 τ 個 minibatch。從一個共同的初始模型 θ_(t-τ)^((init)) 開始,N 個工作機d立更新各自的局部模型 τ 步,得到 {θ_(t,1),θ_(t,2),…,θ_(t,N)},對局部模型取平均得到 θ ̅_t。這一過程稱之為數(shù)據(jù)塊內(nèi)并行優(yōu)化(Intra-Block Parallel Optimization, IBPO)。與直接將 θ ̅_t 作為全局模型不同,BMUF 技術(shù)將歷史更新信息與當前更新信息結(jié)合,得到全局模型:






音樂人工智能、計算機聽覺及音樂科技

音樂科技、音樂人工智能與計算機聽覺以數(shù)字音樂和聲音為研究對象,是聲學、心理學、信號處理、人工智能、多媒體、音樂學及各行業(yè)領(lǐng)域知識相結(jié)合的重要交叉學科,具有重要的學術(shù)研究和產(chǎn)業(yè)開發(fā)價值

【深度】未來5-10年計算機視覺發(fā)展趨勢為何?

專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國鋒)從計算機視覺發(fā)展歷程、現(xiàn)有研究局限性、未來研究方向以及視覺研究范式等多方面展開了深入的探討

華南理工大學羅晶博士和楊辰光教授團隊發(fā)文提出遙操作機器人交互感知與學習算法

羅晶博士和楊辰光教授團隊提出,遙操作機器人系統(tǒng)可以自然地與外界環(huán)境進行交互、編碼人機協(xié)作任務(wù)和生成任務(wù)模型,從而提升系統(tǒng)的類人化操作行為和智能化程度

實時識別卡扣成功裝配的機器學習框架

卡扣式裝配廣泛應用于多種產(chǎn)品類型的制造中,卡扣裝配是結(jié)構(gòu)性的鎖定機制,通過一個機器學習框架將人類識別成功快速裝配的能力遷移到自主機器人裝配上。

基于多任務(wù)學習和負反饋的深度召回模型

基于行為序列的深度學習推薦模型搭配高性能的近似檢索算法可以實現(xiàn)既準又快的召回性能,如何利用這些豐富的反饋信息改進召回模型的性能

張帆博士與Yiannis Demiris教授團隊提出高效的機器人學習抓取衣服方法

機器人輔助穿衣通常人工的將衣服附在機器人末端執(zhí)行器上,忽略機器人識別衣服抓取點并進行抓取的過程,從而將問題簡化

百度算法大牛35頁PPT講解基于EasyDL訓練并部署企業(yè)級高精度AI模型

百度AI開發(fā)平臺高級研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開發(fā)中的難點,以及針對這些難點,百度EasyDL專業(yè)版又是如何解決的

Technica公司發(fā)布智能霧計算平臺技術(shù)白皮書

SmartFog可以輕松地將人工智能分析微服務(wù)部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實現(xiàn)方案,要用下一代人工智能算法來彌補現(xiàn)有解決方案的不足。

深度學習在術(shù)前手術(shù)規(guī)劃中的應用

深度學習對推動術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來計劃手術(shù)程序,而成像對于手術(shù)的成功至關(guān)重要
 
資料獲取
新聞資訊
== 資訊 ==
» 2025年保姆機器人行業(yè)發(fā)展趨勢報告-四
» 2025年機器人產(chǎn)業(yè)的變革與展望白皮書-
» 2025養(yǎng)老機器人行業(yè)研究報告-市場規(guī)模
» OpenAI的軟硬件生態(tài)布局與進展-硬件
» 2025年通向AGI之路-全球人工智能展
» 中國聯(lián)通《人工智能行業(yè)安全治理白皮書(2
» 浙江省 “人工智能+建筑業(yè)”創(chuàng)新應用案例
» 機器人柔性關(guān)節(jié)的作用:自由度,防撞擊、防
» 柔性機器人的研究目的:科學的目的,工程的
» 兩輪機器人的運動原理:4個自由度:2個平
» 兩輪機器人的基本構(gòu)造:機體,底盤和輪系
» 機器龜?shù)慕Y(jié)構(gòu)制作材料:底盤,執(zhí)行器,傳感
» 機器人的避障功能原理:接觸式傳感器觸發(fā)的
» 4足機器人的制作材料:微型減速電機,車條
» 機器人CPG(中樞模式發(fā)生器)的制作材料
 
== 機器人推薦 ==
 
迎賓講解服務(wù)機器人

服務(wù)機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務(wù)機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導引機器人  移動消毒機器人  導診機器人  迎賓接待機器人  前臺機器人  導覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導診機器人 
版權(quán)所有 © 創(chuàng)澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

霍邱县| 志丹县| 宣化县| 时尚| 五原县| 长丰县| 西乌珠穆沁旗| 土默特左旗| 禄丰县| 茌平县| 北票市| 桐庐县| 隆回县| 化州市| 隆安县| 济南市| 河津市| 扎兰屯市| 成武县| 嘉峪关市| 迁西县| 渝中区| 安溪县| 德钦县| 黑河市| 常熟市| 海安县| 萝北县| 铜川市| 永春县| 怀来县| 蕉岭县| 台州市| 措勤县| 湘乡市| 静宁县| 乃东县| 贵溪市| 九台市| 上饶县| 九江县|